FP4CH

FP4CH

PIN, Floating, TUBE Style, Solid Tip, 0.914mm Diameter, Hydrophobic

Add to quote

PIN, FLOATING, TUBE, Stainless Steel, Hydrophobic Coated, Solid, Delivers ~120nL Hanging Drop, 0.914mm Diameter, 12mm Exposed Length, 33mm Total Length

Pin Type

Tube Style

Pin Tip

Solid

Slot Size

No Slot

Transfer Volume

32-102nL in 384 Well Plates, 95-189nL in 96 Well Plates

Pin Diameter

0.914mm

Exposed Pin Length

12mm

Total Pin Length

33mm

Pin Series

FP4 Series

Pin Application

Liquid-To-Dry, Liquid-To-Liquid

Encapsulation/Coating

Passivated Stainless Steel (w/ Hydrophobic Coating)

Material

Stainless Steel

Tube Pins Overview

Tube Pins are stainless steel pins that are fixed inside tubes (cannulas) to provide greater strength to fragile small diameter pins.  These tubes rest upon the lower float plate.

The Tube pins vary in diameter (from 0.229 mm to 0.914 mm), they also vary in the total length of the pin (from 33 mm to 62.2 mm) and the length of the exposed pin (from 12 mm to 17 mm to 30 mm to 41.5 mm) long. The exposed length terminology is used to define how far the pin is able to extend below the bottom float plate. The 12 mm long exposed length pins are used on robots with “Z” limitations and the 30 mm and 41.5 mm long exposed length pins are used when delivering to or from the bottom of a deep well plate. For all other applications use either the standard 17 mm FP_ or FP_N series pins.

The volume of liquid transferred on a pin will vary with the diameter of the pin, the depth to which it is submerged into a liquid, and the speed the pin is withdrawn from the liquid.  Also, the surface tension of both the pin and the liquid will affect the volume transferred.

The Tube pins can be modified by cutting a very small precise slot in the tip of the pin which fills and drains by capillary action.  The advantage of the slot pin is that if there are different volumes in the source wells (if the plate has been cherry-picked many times) the slot pin will be less affected by the different volumes in the source plate.  Slot pins because of filling by capillary action are able to make transfers from very small liquid volumes in source plates.  Slot pins also yield greater precision.  The volume in the slot of a tube pin varies from 6 nL to 2,000 nL.

Both the Tube style pins and the E-clip pins can be coated with a hydrophobic layer to reduce non-specific binding to the pin.

Robotic Pin Tool Applications Using 3nL to 5uL of Liquid
For:
  • Drugs, Antibiotics, Receptors, Ligands, Activity on cultured cells, Mutants, Recombinant clones, Hybridomas,
  • Nucleic acids, DNA, cDNA, RNA, mRNA, RNAi, PCR products
  • Cells, Fungi, Yeast, Bacteria, Viruses, Plasmids

Application – Transfer and replicate cultures and genomic libraries
For:
  • Cells, Fungi, Yeast, Bacteria, Viruses, Plasmids

Application – Assays on Membranes
For:
  • Construction of high-density Nucleic Acid Arrays;
  • Inexpensive Hand-held Device for the Construction of High-Density Nucleic Acid Arrays;
  •  NIH Microarray Project Protocols

For:
  • Gene expression profiles;
  • Differential gene expression profiles between normal and cancerous tissues;
  • RNA and DNA sequence analysis of gene expression;
  • In Vivo Gene Expression Profile Analysis of Human Breast Cancer Progression;
  • Differential Gene Expression Mapping and functional analysis of receptor-like protein kinases;
  • Differential Gene Expression between Normal and Tumor-derived Ovarian Epithelial Cells;
  • Changes in Gene Expression of Leaves in Sugarcane; Expressed Sequence Tags (EST) in cDNA;

For:
  • Mapping and Functional Analysis of protein kinases;
  • Development of DNA-Based Macroarray for the Detection and Identification of species;
  • Physical Map of a  Chromosome in Nectria haematococca Mating Population VI;
  • Development of a DNA-Based Macroarray for the Detection and Identification of Amanita Species;
  • A High Through-put Procedure for Capturing Microsatellites from Complex Plant Genomes;

 For:
  • Oligonucleotide Fingerprinting of Ribosomal RNA Genes;
  • Oligonucleotide fingerprinting of rDNA genes;
  • Characterization of fecal microbiota by oligonucleotide fingerprinting of rDNA genes;

Application – Assays on Glass Slide Arrays
For:
  • Drug Resistance;
  • Measurement of specific proteins in human cumulus cells using reverse phase protein array;
  • Development of a universal peptide-binding protein for simultaneous assay of kinases;
  • Specific proteins using reverse phase protein arrays; Micro-immunoassay Using a Protein Chip;

For:
  • DNA – sequence analysis of gene expression;
  • RNA – sequence analysis of gene expression;
  • cDNA – sequence analysis of gene expression

Application – Assays on microplates for Multiplexing
For:
  • DNA; RNA; Protein; Antibody; Antigen

Application – Assays on agar
For:
  • Functional Genomic screens;
  • Anti-microbial agents;
  • Antibiotic resistance;
  • Drug Resistance;
  • Up-regulated proteins;
  • Toxicity;
  • Antisense RNA;
  • Mutant strains;
  • Receptors;
  • High Throughput Reverse Genetic Screens;
  • Genetic Architecture of Biofilm formation;
For:
  • Genetic Determinants of swimming motility;
  • Saccharomyces Gene Deletion project;
  • Synthetic Genetic array  (SGA) analysis;
  • Biologically active small molecules and the Yeast Halo Assay;
  • Colony arraying with the VIRTEK CAPS system;
  • Deletion of duplicate genes;
For:
  • Discovery of Biologically Active Small Molecules Using a High-Throughput Yeast Halo Assay;
  • A Halo-Based Potency Prediction Algorithm for High-Throughput Detection of Antimicrobial Agents;
  • Functional Genomic Yeast Screen to Identify Pathogenic Bacterial Proteins;
  • Genome-Wide Screen in Francisella novicida for Genes Required for Pulmonary and Systemic Infection;
  • Harnessing Hsp90 function as a therapeutic strategy for fungal infectious disease
For:
  • Detection of Different Cellular and Gene Expression Phenotypes;
  • Drug Resistance of the Fungal Pathogen Candida albicans;
  • Detecting TDP-43 toxicity in yeast;
  • A genome-wide inducible phenotypic screen identifies antisense RNA constructs silencing Escherichia coli essential genes;
  • High-Throughput Reverse Genetic Screening.

Application – Picking Colonies on Agar and Transferring to liquid culture
For:
  • Fungi; Yeast; Bacteria;

Application – Yeast Mating Studies on agar
For:
  •  Yeast genetics

Miscellaneous Applications
  • Resuspend settled material or organisms;
  • Reformat libraries (96-to-384, 384-to-1536, 1536-to-384, 384-to-96);
  • Wounding Tissue Culture Monolayers with Pin Tools;
  • Dysfunctional Connections Between the Nucleus and the Actin and Microtubule Networks in Laminopathic Models;
  • A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods;
  • A Multi-domain Fragment of Nogo-A Protein Is a Potent Inhibitor of Cortical Axon Regeneration via Nogo Receptor;
Hydrophobic Coating Overview

Many of our customers are concerned about the non-specific binding of proteins and lipids or lipo-proteins to robotic pins.  One way of reducing this non-specific binding is the /ah Surface Energy Modification System.

V&P Scientific is using the /ah System to alter the wetting characteristics of the pins. Simply put, a pin that is not wetted by a particular liquid has a lower critical surface tension than the surface tension of the liquid. A pin not wetted by the particular liquid is often said to “repel” the liquid, and the liquid beads up on the non-wetted pin. Conversely, if the particular liquid wets the pin, a drop will spread out on the pin surface.

Our hydrophobic coated pins are very useful in handling solutions with proteins or lipids that may stick to naked stainless steel.  See this page for a more thorough discussion of hydrophobicity and surface tension.

067B Robot Pin Tool Cleaning & Liquid Sample Transfer
267A Pin Tool Volume FITC Protocol
040A VP 110A Pin Cleaning Solution
225 How to Change Pins in a Pin Tool

Related Products

Hydrophobic Coated vs Non-Coated Pin Transfers

Solid Pin Delivery Data For Aqueous Solutions In 96 Format With Uncoated And /Ah Hydrophobic Coated Pins
PinDescriptionnl TransferredCV%
0.229 mm diameter (FP9)Total PinUncoated7.412.4
Hydrophobic7.465.4
0.229 mm diameter (FP9)Hanging DropUncoatedN/AN/A
Hydrophobic2.093.8
0.457 mm diameter (FP1)Total PinUncoated33.483.2
Hydrophobic28.177.5
0.457 mm diameter (FP1)Hanging DropUncoated16.964.5
Hydrophobic8.510.8
0.787 mm diameter (FP3)Total PinUncoated87.323.9
Hydrophobic77.43.9
0.787 mm diameter (FP3)Hanging DropUncoated48.771.2
Hydrophobic43.059.4
1.19 mm diameter  (VP 409 & VP 386)Total PinUncoated247.222.8
Hydrophobic192.672.6
1.19 mm diameter (VP 409 & VP 386)Hanging DropUncoated76.351.6
Hydrophobic108.42.8
1.58 mm diameter (VP 408 & VP 384)Total PinUncoated273.54.6
Hydrophobic259.253.1
1.58 mm diameter (VP 408 & VP 384)Hanging DropUncoated201.935
Hydrophobic170.047.5

Transfer Of Horseradish Peroxidase In Tris Buffered Saline With Pin Tools

Conclusion

Coating pins will reduce the total amount of liquid transferred and also reduce the amount of non-specific binding to the stainless-steel pins. If the substance you are transferring has high non-specific binding this will be an important factor in selecting your pins.

Slot Pin Delivery Data For Aqueous Solutions In 96 Format With Uncoated And /Ah Hydrophobic Coated Pin
PinDescriptionnl TransferredCV%
0.229 mm diameter (FP9)Total PinUncoated7.412.4
Hydrophobic7.465.4
0.229 mm diameter (FP9)Hanging DropUncoatedN/AN/A
Hydrophobic2.093.8
0.457 mm diameter (FP1)Total PinUncoated33.483.2
Hydrophobic28.177.5
0.457 mm diameter (FP1)Hanging DropUncoated16.964.5
Hydrophobic8.510.8
0.787 mm diameter (FP3)Total PinUncoated87.323.9
Hydrophobic77.43.9
0.787 mm diameter (FP3)Hanging DropUncoated48.771.2
Hydrophobic43.059.4
1.19 mm diameter  (VP 409 & VP 386)Total PinUncoated247.222.8
Hydrophobic192.672.6
1.19 mm diameter (VP 409 & VP 386)Hanging DropUncoated76.351.6
Hydrophobic108.42.8
1.58 mm diameter (VP 408 & VP 384)Total PinUncoated273.54.6
Hydrophobic259.253.1
1.58 mm diameter (VP 408 & VP 384)Hanging DropUncoated201.935
Hydrophobic170.047.5

Transfer Of Horseradish Peroxidase In Tris Buffered Saline With Pin Tools

Conclusion

Although the slots in the pin are a precise volume, the liquid that is transferred is usually more. The reason for this is due to the surface tension of the liquid causing the liquid in the slot to “bow out” thus increasing the volume of the liquid in the slot. If is important for you to transfer exactly a certain volume we can make custom slots to match the surface tension characteristics of your liquid

Liquid Surface Tension

Effect Of DNA Or BSA Concentration On Slot Pin Transfers Of Uncoated And Hydrophobic Coated Pins (FP3CS500)
Solvent/SampleConcentrationCV%nl FITC TransferredCV%nl FITC Transferred
UncoatedUncoatedHydrophobic CoatedHydrophobic Coated
DMSO (-)08.1353.427.5298.72
DMSO + DNA (mg/ml)0.56.6497.216.6435.86
0.259432.494.1391.93
0.1258.9363.640.9344.75
0.06252.3381.862331.68
0.03131.5378.034.4331.71
0.01561.2357.521.4329.03
Tris (-)04.9577.317.2493.53
Tris + DNA (mg/ml)0.54.5540.531.1477.5
0.254.6518.216.1456.75
0.12515.8583.254.1438.82
0.06254.2551.173.1433.69
0.03134.4536.662.3458.37
0.01562.9528.531.2441.1
Tris + BSA (%)45.4462.1311409.27
14452.862.7426.58
0.2511.7456.451.3408.72
0.06251.1445.226.5393.07
0.01563.7462.853.9430.2
0.00391.5493.542.2437.29
0.0012.9504.250.7475.96
Conclusions

1. Increasing the concentration of DNA (sheared salmon sperm) to .25 mg/ml significantly increases the volume of DMSO liquid transferred for both coated and uncoated FP3S500 Slot Pins.
2. Increasing the concentration of DNA does not significantly increase the volume of Tris buffer (aqueous) transferred by both coated and uncoated FP3S500 Slot Pins.
3. Increasing the concentration of BSA (Bovine Serum Albumin) significantly decreases the volume of Tris buffer transferred by both coated and uncoated FP3S500 Slot Pins.
4. Hydrophobic coated FP3S500 Slot Pins transferred less DMSO – DNA and less Tris DNA and less Tris BSA than the uncoated FP3S500 Slot Pins.
5. Both coated and uncoated FP3S500 pins transfer significantly more aqueous solution than DMSO.

Effect Of DNA Or BSA Concentration On Slot Pin Transfers Of Uncoated And Hydrophobic Coated Pins (FP1CS50)
Solvent/SampleConcentrationCV%nl FITC TransferredCV%nl FITC Transferred
UncoatedUncoatedHydrophobic CoatedHydrophobic Coated
DMSO (-)04.249.382.149.31
DMSO + DNA (mg/ml)0.54.951.242.656.79
0.251.750.21.249.53
0.1251.551.272.349.77
0.06252.249.344.148.19
0.03131.249.030.250.23
0.01562.445.91.446.64
Tris (-)02.689.512.991.34
Tris + DNA (mg/ml)0.5777.110.684.62
0.253.982.221.684.89
0.1253.985.42185.08
0.06251.585.362.885.03
0.0313284.52388.19
0.01562.682.922.883.2
Conclusions

1. In contrast to the FP3S500 data, increasing the concentration of DNA to .25 mg/ml does not significantly increase the volume of DMSO liquid transferred for both coated and uncoated FP1S50 Slot Pins.
2. Increasing the concentration of DNA does not significantly increase the volume of Tris buffer (aqueous) transferred by both coated and uncoated FP1S50 Slot Pins.
3. In contrast to the FP3S500 data, FP1S50 coated pins transferred about the same volume of DNA at all concentrations as did uncoated pins.
4. Both coated and uncoated FP1S50 pins transfer significantly more aqueous solution than DMSO.
5. The differences between the FP3S500 and the FP1S50 pin may be due to the different pin diameter’s effect on contact angle and therefore on the “wetting” of the pin. See the diagram on the link to / ah energy system.

PinDescriptionnl TransferredCV%
0.229 mm diameter (FP9)Total PinUncoated7.412.4
Hydrophobic7.465.4
0.229 mm diameter (FP9)Hanging DropUncoatedN/AN/A
Hydrophobic2.093.8
0.457 mm diameter (FP1)Total PinUncoated33.483.2
Hydrophobic28.177.5
0.457 mm diameter (FP1)Hanging DropUncoated16.964.5
Hydrophobic8.510.8
0.787 mm diameter (FP3)Total PinUncoated87.323.9
Hydrophobic77.43.9
0.787 mm diameter (FP3)Hanging DropUncoated48.771.2
Hydrophobic43.059.4
1.19 mm diameter  (VP 409 & VP 386)Total PinUncoated247.222.8
Hydrophobic192.672.6
1.19 mm diameter (VP 409 & VP 386)Hanging DropUncoated76.351.6
Hydrophobic108.42.8
1.58 mm diameter (VP 408 & VP 384)Total PinUncoated273.54.6
Hydrophobic259.253.1
1.58 mm diameter (VP 408 & VP 384)Hanging DropUncoated201.935
Hydrophobic170.047.5

Aqueous Transfer with Solid Pins

Hydrophobic coating pins will reduce the total amount of aqueous HRP liquid transferred and also reduce the amount of non-specific binding to the stainless-steel pins. If the substance you are transferring has high non-specific binding this will be an important factor in selecting your pins.

 

Pin diameter also has an effect on the degree of reduction of liquid transfer with hydrophobic coating as the smaller the diameter the less the reduction of transfer. This is most likely due to the curvature of the pin affecting the wetting contact angle

PinDescriptionnl TransferredCV%
0.457 mm diameter (FP1)6 nl SlotTotal Pin*Uncoated25.610.8
HydrophobicN/AN/A
10 nl SlotTotal Pin*Uncoated23.366.1
Hydrophobic25.856.9
50 nl SlotTotal Pin*Uncoated67.832.5
HydrophobicN/AN/A
0.787 mm diameter (FP3)  100 nl SlotTotal Pin*Uncoated180.327.2
Hydrophobic205.845.5
200 nl SlotTotal Pin*Uncoated277.824.9
Hydrophobic287.33.8
500 nl SlotTotal Pin*Uncoated581.165.2
Hydrophobic555.693

DMSO Transfer with Slot Pins

Hydrophobic coating pins will slightly increase the total amount of DMSO FITC liquid transferred.

PinDescriptionnl TransferredCV%
0.787 mm diameter (FP3)    100 nl Slot Total Pin, Including SlotUncoated195.691.6
Hydrophobic170.22.9
0.787 mm diameter (FP3)  100 nl Slot, Slot OnlyUncoated149.674.9
Hydrophobic129.617.6
0.787 mm diameter (FP3)200 nl Slot Total Pin, Including SlotUncoated269.771.9
Hydrophobic228.6217.1
0.787 mm diameter (FP3)200 nl Slot, Slot OnlyUncoated237.528.9
Hydrophobic186.95.9

Aqueous Transfer with Slot Pins

Although the slots in the pin are a precise volume, the liquid that is transferred is usually more because of the volume carried on the sides of the pins. 

As seen with other aqueous data the amount transferred on hydrophobic coated Slot pins is less than on uncoated Solid or Slot pins. Thus Hydrophobic coating has the most effect on aqueous transfers.

Withdrawl Speeds Impact on Volume Transfer

Solid Pins More affected by Source Plate Volume

Volume Transferred For FP1 Pins (Uncoated) In 96 And 384 Formats
Volume Transferred For FP3 Pins (Uncoated) In 96 And 384 Formats

Note: Same volume (200ul for 96 Format and 74 ul for 384 Format) in recipient plates and same pin withdrawal speed for all pins. Changes to pin withdrawal speed or volume in the source plate can result in different volumes being transferred.

Transfer volumes should always be confirmed by customers for their assay conditions and automated system.

Aqueous Solutions Pin Transfer Volumes Ranges

Aqueous Solutions on Uncoated Pins in 96 Format Microplates(1)
Pin TypePin Diameter(mm)Shape96 Format Low Range(nL)²96 Format High Range(nL)²
FP90.229Solid1339
FP80.356Solid1537
FP10.457Solid2261
FP1S60.4576nL Slot3467
FP1S100.45710nL Slot3974
FP1S500.45750nL Slot90124
FP30.787Solid93213
FP3S1000.787100nL Slot213334
FP3S2000.787200nL Slot311449
FP3S5000.787500nL Slot515671
FP40.914Solid126289
Footnotes: (1) Delivery volume range is determined by speed of withdrawal from source liquid: Z-Speed Range = 1.5-30 mm/sec, slow speed = low volume delivery range, fast speed = high volume delivery range (2) 200ul source plate volume per well
Aqueous Solutions on Hydrophobic Pins in 96 Format Microplates(1)
Pin TypePin Diameter(mm)Shape96 Format Low Range(nL)²96 Format High Range(nL)²
FP90.229Solid1338
FP80.356Solid
FP10.457Solid2360
FP1S60.4576nL Slot3367
FP1S100.45710nL Slot4075
FP1S500.45750nL Slot86119
FP30.787Solid76209
FP3S1000.787100nL Slot188324
FP3S2000.787200nL Slot288436
FP3S5000.787500nL Slot473649
FP40.914Solid
Footnotes: (1) Delivery volume range is determined by speed of withdrawal from source liquid: Z-Speed Range = 1.5-30 mm/sec, slow speed = low volume delivery range, fast speed = high volume delivery range (2) 200ul source plate volume per well
Aqueous Solution on E-Clip, Uncoated Pins(1)
Pin TypePin Diameter(mm)ShapeLow Range(nL)²High Range(nL)²
FP1.58Solid Pointed175594
FPS.51.58500nL Slot524962
FPS1.581000nL Slot10561476
FPS21.582000nL Slot17392174
FPS51.585000nL Slot51504953
FP61.58Solid Flat465960
FP6S.51.58500nL Slot9341445
FP6S1.581000nL Slot13961930
FP6S21.582000nL Slot20722637
FP6S51.585000nL Slot48204693
Footnotes:(1) Delivery volume range is determined by speed of withdrawal from source liquid: Z-Speed Range = 1.5-30 mm/sec, slow speed = low volume delivery range, fast speed = high volume delivery range (2) 200ul source plate volume per well for 96 Format and 75ul source plate volume per well for 384 Format

DMSO Pin Transfer Volume Range Charts

Uncoated Pins in 96 and 384 Format Microplates(1)
Pin TypePin Diameter(mm)Shape96 Format Low Range(nL)²96 Format High Range(nL)²384 Format Low Range(nL)³384 Format High Range(nL)³
FP90.229Solid41038
FP80.35Solid1326618
FP10.457Solid18431131
FP1S60.4576nL Slot24491534
FP1S100.45710nL Slot30542140
FP1S200.45720nL Slot37612746
FP1S300.45730nL Slot46683554
FP1S400.45740nL Slot57784563
FP1S500.45750nL Slot70905675
FP30.787Solid671392979
FP40.91Solid941973498
FP3S1000.787100nL Slot175241114163
FP3S2000.787200nL Slot280332203250
FP3S5000.787500nL Slot535559427464
FP4S10000.911000nL Slot9401011704800
FP4S20000.912000nL Slot1518160812771362
Footnotes: (1) Delivery volume range is determined by speed of withdrawal from source liquid: Z-Speed Range = 1.5-30 mm/sec, slow speed = low volume delivery range, fast speed = high volume delivery range (2) 200ul source plate volume per well (3) 75ul source plate volume per well
Hydrophobic-coated Pins in 96 and 384 Format Microplates(1)
Pin TypePin Diameter (mm)Shape96 Format Low Range(nL)²96 Format High Range(nL)²384 Format Low Range(nL)³384 Format High Range(nL)³
FP9H0.229Solid41038
FP8H0.35Solid924617
FP1H0.457Solid1539927
FP1S6H0.4576nL Slot23491432
FP1S10H0.45710nL Slot29532038
FP1S20H0.45720nL Slot35592643
FP1S30H0.45730nL Slot47693553
FP1S40H0.45740nL Slot54754158
FP1S50H0.45750nL Slot69905773
FP3H0.787Solid671342776
FP4H0.91Solid9518932102
FP3S100H0.787100nL Slot170227108164
FP3S200H0.787200nL Slot266320190239
FP3S500H0.787500nL Slot520542416456
FP4S1000H0.911000nL Slot9321000741805
FP4S2000H0.912000nL Slot1571163813511423
Footnotes: (1) Delivery volume range is determined by speed of withdrawal from source liquid: Z-Speed Range = 1.5-30 mm/sec, slow speed = low volume delivery range, fast speed = high volume delivery range (2) 200ul source plate volume per well (3) 75ul source plate volume per well
E-Clip, Uncoated Pins, for 96 and 384 Format Microplates(1)
Pin TypeDiameter (mm)Shape96 Format Low Range(nL)²96 Format High Range(nL)²384 Format Low Range(nL)³384 Format High Range(nL)³
FP1.58Solid Pointed147411168395
FPS.51.58500nL Slot442704631843
FPS1.581000nL Slot893113013431498
FPS21.582000nL Slot1911203826072767
FPS51.585000nL Slot3908429651805253
FP61.58Solid Flat323674154398
FP6S.51.58500nL Slot73410428551053
FP6S1.581000nL Slot1210150016381717
FP6S21.582000nL Slot2299238427873068
FP6S51.585000nL Slot4329465652375245
Footnotes:(1) Delivery volume range is determined by speed of withdrawal from source liquid: Z-Speed Range = 1.5-30 mm/sec, slow speed = low volume delivery range, fast speed = high volume delivery range (2) 200ul source plate volume per well (3) 75ul source plate volume per well