Magnetic Bead Separation

What Makes Our Magnetic Bead Separation Devices Unique

V&P Scientific provides a full line of magnetic bead separation devices for use with magnetic beads in microplates, vials, tubes, bottles, and large containers. V&P has the largest collection of Magnetic Bead Separation devices on the market for all Microplate and PCR models, all types of tube and micro-tube racks, and many bottles stands.

Pellet Location Choices

V&P Magnetic Bead separation devices will collect bead pellets at multiple locations around the vessels from the bottom, to one side, to 4 sides, to different levels up the side of the vessel or to both a high and a low position on the side.

Fast Separation

V&P Magnetic Separation devices use the strongest magnets and locate them close to the wall of the vessel for the fastest separation times and least bead loss during wash steps. We also control the direction of the magnetic field so it has the maximum capture.

Customizable

We build custom magnetic Bead Separation devices to match your unique microplate, robotic microplate washer, tube, microtube, or bottle system. If you haven’t already selected the best microplate for your assay, call us for suggestions. We can save you from many unanticipated problems.

Magnetic Bead Separation Applications

Microplates

It is important to match the right magnet plate with your microplate. There are many different microplate manufacturers and each of them incorporates unique structural features into their plates. Some do a better job at providing a smooth internal well or tube surface than others. Features of the skirt, the shape of the wells, to the injection “gates” under the microplate are very important. 

We also consider the magnetic beads or particles you are using. Depending on the size of the beads, and also the concentration, we may suggest a specific product for your application. Naturally, larger magnetic bead particles will separate faster than smaller particles. The larger particles have greater mass which aids in the magnetic bead separation.

 

Depending on your protocol, you may want the beads to be collected on the side of the wells, or maybe directly in the center. We have several magnetic bead separation devices that will place the beads in different locations. We look at the shape of the wells, volumes, and how you will be removing the supernatant.

More commonly, magnetic beads are separated and then washed using pipette tips. By using pipette tips, it is important to keep the beads away from the pipette. This is why bead location is so important.

  • FlicknBlot – V&P also has a line of hand-held magnetic bead separation devices. These devices allow for the microplate to be fixed to the magnet plate. You can then pick up the entire device and “Flick” out the supernatant. This is a fast, economical way of removing supernatant from your microplates while still retaining your magnetic beads.
  • While the more common method is to remove the supernatant from your beads, we also have the VP 407AM-N-1 that will remove the beads from the microplate. Using a PCR plate as a shield, you can use our handheld magnetic device to move the beads from one microplate to another. This will save you time and money as no pipette tips are needed.

Tubes and Micro-Tubes

V&P has a large variety of different magnetic bead separation devices for tubes of every size. It is important to match the right magnet device with your tube and where you want the pellet located. If you need assistance or have any questions about our magnet devices, please feel free to contact us. 

We also consider the magnetic beads or particles you are using. Depending on the size of the beads, and the concentration, we may suggest a specific product for your application. Naturally, larger magnetic bead particles will separate faster than smaller particles. The larger particles have a greater mass which aids in the magnetic bead separation.

Depending on your protocol, you may want the beads to be collected on the side of the tube, at different height levels, at multiple levels, or maybe directly at the bottom, center, or side of the tube. We have several magnetic bead separation devices that will place the beads in different locations. We look at the height and shape of each tube plus the volume of initial liquid and volume of the elution liquid in your assay protocol and how you will be removing the supernatant.

Aspirate and Dispense:
Most commonly, magnetic beads are pelleted, and then the supernatant is removed by our aspiration manifolds or a pipette and then washed using our dispensing manifolds or by dispensing pipette. It is important to keep the beads away from the aspiration device. Therefore bead collection location is extremely important.

FlicknBlot and Dispense:
V&P also has a line of hand-held magnetic bead separation devices for tubes. These devices allow for the tubes to be fixed to the magnet rack. You can then pick up the entire device and “Flick” out the supernatant. The tube can then be blotted on our lint-free blotting paper. This is a fast, economical way of removing supernatant from your tubes while still retaining your magnetic beads. These tubes can be washed with our dispensing manifolds.

Bottles

V&P has several magnetic separation stands for bottles 500ml to 1 liter in size and an adjustable Stand that will accommodate Bottles with a diameter up to 73 mm. It is important to match the right magnet device with your bottle and where you want the pellet located. If you need assistance or have any questions about our magnet devices, please feel free to contact us.

MagWash®

Our MagWash® Combines Magnetic Bead Separation and resuspension using the SpinVessel® without having to move the tube to a vortexer, or use a pipet to resuspend magnetic beads. By using a powerful Neodymium Magnet, we can separate magnetic beads quickly and efficiently without any bead loss.

Additional Offerings

Magnetic Bead Extraction

There are several ways to wash Magnetic Beads and remove the supernatant without removing beads, (aspirate and dispense, our unique Flick 'N Blot technique, or our MagWash® technique). While these are the more common methods to remove the supernatant from your beads, we also have the VP 407AM-N-1 that will remove the beads from the microplate and transfer them to another microplate for further washing.

“V&P always impresses. Have you seen the V&P Magnets that can convert a multi-channel head to turn your liquid handler into a kingfisher style extraction? Great Products!”

- Michael Sahl

Canadian Sales Manager at Hamilton Company
Category
No of Wells
Microplate Type
Well Bottom Shape
No of Tubes
Tube or Bottle Volume

Magentic Bead Separation Products

Showing 76–90 of 113 results

Hydrophobic Coated vs Non-Coated Pin Transfers

Solid Pin Delivery Data For Aqueous Solutions In 96 Format With Uncoated And /Ah Hydrophobic Coated Pins
PinDescriptionnl TransferredCV%
0.229 mm diameter (FP9)Total PinUncoated7.412.4
Hydrophobic7.465.4
0.229 mm diameter (FP9)Hanging DropUncoatedN/AN/A
Hydrophobic2.093.8
0.457 mm diameter (FP1)Total PinUncoated33.483.2
Hydrophobic28.177.5
0.457 mm diameter (FP1)Hanging DropUncoated16.964.5
Hydrophobic8.510.8
0.787 mm diameter (FP3)Total PinUncoated87.323.9
Hydrophobic77.43.9
0.787 mm diameter (FP3)Hanging DropUncoated48.771.2
Hydrophobic43.059.4
1.19 mm diameter  (VP 409 & VP 386)Total PinUncoated247.222.8
Hydrophobic192.672.6
1.19 mm diameter (VP 409 & VP 386)Hanging DropUncoated76.351.6
Hydrophobic108.42.8
1.58 mm diameter (VP 408 & VP 384)Total PinUncoated273.54.6
Hydrophobic259.253.1
1.58 mm diameter (VP 408 & VP 384)Hanging DropUncoated201.935
Hydrophobic170.047.5

Transfer Of Horseradish Peroxidase In Tris Buffered Saline With Pin Tools

Conclusion

Coating pins will reduce the total amount of liquid transferred and also reduce the amount of non-specific binding to the stainless-steel pins. If the substance you are transferring has high non-specific binding this will be an important factor in selecting your pins.

Slot Pin Delivery Data For Aqueous Solutions In 96 Format With Uncoated And /Ah Hydrophobic Coated Pin
PinDescriptionnl TransferredCV%
0.229 mm diameter (FP9)Total PinUncoated7.412.4
Hydrophobic7.465.4
0.229 mm diameter (FP9)Hanging DropUncoatedN/AN/A
Hydrophobic2.093.8
0.457 mm diameter (FP1)Total PinUncoated33.483.2
Hydrophobic28.177.5
0.457 mm diameter (FP1)Hanging DropUncoated16.964.5
Hydrophobic8.510.8
0.787 mm diameter (FP3)Total PinUncoated87.323.9
Hydrophobic77.43.9
0.787 mm diameter (FP3)Hanging DropUncoated48.771.2
Hydrophobic43.059.4
1.19 mm diameter  (VP 409 & VP 386)Total PinUncoated247.222.8
Hydrophobic192.672.6
1.19 mm diameter (VP 409 & VP 386)Hanging DropUncoated76.351.6
Hydrophobic108.42.8
1.58 mm diameter (VP 408 & VP 384)Total PinUncoated273.54.6
Hydrophobic259.253.1
1.58 mm diameter (VP 408 & VP 384)Hanging DropUncoated201.935
Hydrophobic170.047.5

Transfer Of Horseradish Peroxidase In Tris Buffered Saline With Pin Tools

Conclusion

Although the slots in the pin are a precise volume, the liquid that is transferred is usually more. The reason for this is due to the surface tension of the liquid causing the liquid in the slot to “bow out” thus increasing the volume of the liquid in the slot. If is important for you to transfer exactly a certain volume we can make custom slots to match the surface tension characteristics of your liquid

Liquid Surface Tension

Effect Of DNA Or BSA Concentration On Slot Pin Transfers Of Uncoated And Hydrophobic Coated Pins (FP3CS500)
Solvent/SampleConcentrationCV%nl FITC TransferredCV%nl FITC Transferred
UncoatedUncoatedHydrophobic CoatedHydrophobic Coated
DMSO (-)08.1353.427.5298.72
DMSO + DNA (mg/ml)0.56.6497.216.6435.86
0.259432.494.1391.93
0.1258.9363.640.9344.75
0.06252.3381.862331.68
0.03131.5378.034.4331.71
0.01561.2357.521.4329.03
Tris (-)04.9577.317.2493.53
Tris + DNA (mg/ml)0.54.5540.531.1477.5
0.254.6518.216.1456.75
0.12515.8583.254.1438.82
0.06254.2551.173.1433.69
0.03134.4536.662.3458.37
0.01562.9528.531.2441.1
Tris + BSA (%)45.4462.1311409.27
14452.862.7426.58
0.2511.7456.451.3408.72
0.06251.1445.226.5393.07
0.01563.7462.853.9430.2
0.00391.5493.542.2437.29
0.0012.9504.250.7475.96
Conclusions

1. Increasing the concentration of DNA (sheared salmon sperm) to .25 mg/ml significantly increases the volume of DMSO liquid transferred for both coated and uncoated FP3S500 Slot Pins.
2. Increasing the concentration of DNA does not significantly increase the volume of Tris buffer (aqueous) transferred by both coated and uncoated FP3S500 Slot Pins.
3. Increasing the concentration of BSA (Bovine Serum Albumin) significantly decreases the volume of Tris buffer transferred by both coated and uncoated FP3S500 Slot Pins.
4. Hydrophobic coated FP3S500 Slot Pins transferred less DMSO – DNA and less Tris DNA and less Tris BSA than the uncoated FP3S500 Slot Pins.
5. Both coated and uncoated FP3S500 pins transfer significantly more aqueous solution than DMSO.

Effect Of DNA Or BSA Concentration On Slot Pin Transfers Of Uncoated And Hydrophobic Coated Pins (FP1CS50)
Solvent/SampleConcentrationCV%nl FITC TransferredCV%nl FITC Transferred
UncoatedUncoatedHydrophobic CoatedHydrophobic Coated
DMSO (-)04.249.382.149.31
DMSO + DNA (mg/ml)0.54.951.242.656.79
0.251.750.21.249.53
0.1251.551.272.349.77
0.06252.249.344.148.19
0.03131.249.030.250.23
0.01562.445.91.446.64
Tris (-)02.689.512.991.34
Tris + DNA (mg/ml)0.5777.110.684.62
0.253.982.221.684.89
0.1253.985.42185.08
0.06251.585.362.885.03
0.0313284.52388.19
0.01562.682.922.883.2
Conclusions

1. In contrast to the FP3S500 data, increasing the concentration of DNA to .25 mg/ml does not significantly increase the volume of DMSO liquid transferred for both coated and uncoated FP1S50 Slot Pins.
2. Increasing the concentration of DNA does not significantly increase the volume of Tris buffer (aqueous) transferred by both coated and uncoated FP1S50 Slot Pins.
3. In contrast to the FP3S500 data, FP1S50 coated pins transferred about the same volume of DNA at all concentrations as did uncoated pins.
4. Both coated and uncoated FP1S50 pins transfer significantly more aqueous solution than DMSO.
5. The differences between the FP3S500 and the FP1S50 pin may be due to the different pin diameter’s effect on contact angle and therefore on the “wetting” of the pin. See the diagram on the link to / ah energy system.

PinDescriptionnl TransferredCV%
0.229 mm diameter (FP9)Total PinUncoated7.412.4
Hydrophobic7.465.4
0.229 mm diameter (FP9)Hanging DropUncoatedN/AN/A
Hydrophobic2.093.8
0.457 mm diameter (FP1)Total PinUncoated33.483.2
Hydrophobic28.177.5
0.457 mm diameter (FP1)Hanging DropUncoated16.964.5
Hydrophobic8.510.8
0.787 mm diameter (FP3)Total PinUncoated87.323.9
Hydrophobic77.43.9
0.787 mm diameter (FP3)Hanging DropUncoated48.771.2
Hydrophobic43.059.4
1.19 mm diameter  (VP 409 & VP 386)Total PinUncoated247.222.8
Hydrophobic192.672.6
1.19 mm diameter (VP 409 & VP 386)Hanging DropUncoated76.351.6
Hydrophobic108.42.8
1.58 mm diameter (VP 408 & VP 384)Total PinUncoated273.54.6
Hydrophobic259.253.1
1.58 mm diameter (VP 408 & VP 384)Hanging DropUncoated201.935
Hydrophobic170.047.5

Aqueous Transfer with Solid Pins

Hydrophobic coating pins will reduce the total amount of aqueous HRP liquid transferred and also reduce the amount of non-specific binding to the stainless-steel pins. If the substance you are transferring has high non-specific binding this will be an important factor in selecting your pins.

 

Pin diameter also has an effect on the degree of reduction of liquid transfer with hydrophobic coating as the smaller the diameter the less the reduction of transfer. This is most likely due to the curvature of the pin affecting the wetting contact angle

PinDescriptionnl TransferredCV%
0.457 mm diameter (FP1)6 nl SlotTotal Pin*Uncoated25.610.8
HydrophobicN/AN/A
10 nl SlotTotal Pin*Uncoated23.366.1
Hydrophobic25.856.9
50 nl SlotTotal Pin*Uncoated67.832.5
HydrophobicN/AN/A
0.787 mm diameter (FP3)  100 nl SlotTotal Pin*Uncoated180.327.2
Hydrophobic205.845.5
200 nl SlotTotal Pin*Uncoated277.824.9
Hydrophobic287.33.8
500 nl SlotTotal Pin*Uncoated581.165.2
Hydrophobic555.693

DMSO Transfer with Slot Pins

Hydrophobic coating pins will slightly increase the total amount of DMSO FITC liquid transferred.

PinDescriptionnl TransferredCV%
0.787 mm diameter (FP3)    100 nl Slot Total Pin, Including SlotUncoated195.691.6
Hydrophobic170.22.9
0.787 mm diameter (FP3)  100 nl Slot, Slot OnlyUncoated149.674.9
Hydrophobic129.617.6
0.787 mm diameter (FP3)200 nl Slot Total Pin, Including SlotUncoated269.771.9
Hydrophobic228.6217.1
0.787 mm diameter (FP3)200 nl Slot, Slot OnlyUncoated237.528.9
Hydrophobic186.95.9

Aqueous Transfer with Slot Pins

Although the slots in the pin are a precise volume, the liquid that is transferred is usually more because of the volume carried on the sides of the pins. 

As seen with other aqueous data the amount transferred on hydrophobic coated Slot pins is less than on uncoated Solid or Slot pins. Thus Hydrophobic coating has the most effect on aqueous transfers.

Withdrawl Speeds Impact on Volume Transfer

Solid Pins More affected by Source Plate Volume

Volume Transferred For FP1 Pins (Uncoated) In 96 And 384 Formats
Volume Transferred For FP3 Pins (Uncoated) In 96 And 384 Formats

Note: Same volume (200ul for 96 Format and 74 ul for 384 Format) in recipient plates and same pin withdrawal speed for all pins. Changes to pin withdrawal speed or volume in the source plate can result in different volumes being transferred.

Transfer volumes should always be confirmed by customers for their assay conditions and automated system.

Aqueous Solutions Pin Transfer Volumes Ranges

Aqueous Solutions on Uncoated Pins in 96 Format Microplates(1)
Pin TypePin Diameter(mm)Shape96 Format Low Range(nL)²96 Format High Range(nL)²
FP90.229Solid1339
FP80.356Solid1537
FP10.457Solid2261
FP1S60.4576nL Slot3467
FP1S100.45710nL Slot3974
FP1S500.45750nL Slot90124
FP30.787Solid93213
FP3S1000.787100nL Slot213334
FP3S2000.787200nL Slot311449
FP3S5000.787500nL Slot515671
FP40.914Solid126289
Footnotes: (1) Delivery volume range is determined by speed of withdrawal from source liquid: Z-Speed Range = 1.5-30 mm/sec, slow speed = low volume delivery range, fast speed = high volume delivery range (2) 200ul source plate volume per well
Aqueous Solutions on Hydrophobic Pins in 96 Format Microplates(1)
Pin TypePin Diameter(mm)Shape96 Format Low Range(nL)²96 Format High Range(nL)²
FP90.229Solid1338
FP80.356Solid
FP10.457Solid2360
FP1S60.4576nL Slot3367
FP1S100.45710nL Slot4075
FP1S500.45750nL Slot86119
FP30.787Solid76209
FP3S1000.787100nL Slot188324
FP3S2000.787200nL Slot288436
FP3S5000.787500nL Slot473649
FP40.914Solid
Footnotes: (1) Delivery volume range is determined by speed of withdrawal from source liquid: Z-Speed Range = 1.5-30 mm/sec, slow speed = low volume delivery range, fast speed = high volume delivery range (2) 200ul source plate volume per well
Aqueous Solution on E-Clip, Uncoated Pins(1)
Pin TypePin Diameter(mm)ShapeLow Range(nL)²High Range(nL)²
FP1.58Solid Pointed175594
FPS.51.58500nL Slot524962
FPS1.581000nL Slot10561476
FPS21.582000nL Slot17392174
FPS51.585000nL Slot51504953
FP61.58Solid Flat465960
FP6S.51.58500nL Slot9341445
FP6S1.581000nL Slot13961930
FP6S21.582000nL Slot20722637
FP6S51.585000nL Slot48204693
Footnotes:(1) Delivery volume range is determined by speed of withdrawal from source liquid: Z-Speed Range = 1.5-30 mm/sec, slow speed = low volume delivery range, fast speed = high volume delivery range (2) 200ul source plate volume per well for 96 Format and 75ul source plate volume per well for 384 Format

DMSO Pin Transfer Volume Range Charts

Uncoated Pins in 96 and 384 Format Microplates(1)
Pin TypePin Diameter(mm)Shape96 Format Low Range(nL)²96 Format High Range(nL)²384 Format Low Range(nL)³384 Format High Range(nL)³
FP90.229Solid41038
FP80.35Solid1326618
FP10.457Solid18431131
FP1S60.4576nL Slot24491534
FP1S100.45710nL Slot30542140
FP1S200.45720nL Slot37612746
FP1S300.45730nL Slot46683554
FP1S400.45740nL Slot57784563
FP1S500.45750nL Slot70905675
FP30.787Solid671392979
FP40.91Solid941973498
FP3S1000.787100nL Slot175241114163
FP3S2000.787200nL Slot280332203250
FP3S5000.787500nL Slot535559427464
FP4S10000.911000nL Slot9401011704800
FP4S20000.912000nL Slot1518160812771362
Footnotes: (1) Delivery volume range is determined by speed of withdrawal from source liquid: Z-Speed Range = 1.5-30 mm/sec, slow speed = low volume delivery range, fast speed = high volume delivery range (2) 200ul source plate volume per well (3) 75ul source plate volume per well
Hydrophobic-coated Pins in 96 and 384 Format Microplates(1)
Pin TypePin Diameter (mm)Shape96 Format Low Range(nL)²96 Format High Range(nL)²384 Format Low Range(nL)³384 Format High Range(nL)³
FP9H0.229Solid41038
FP8H0.35Solid924617
FP1H0.457Solid1539927
FP1S6H0.4576nL Slot23491432
FP1S10H0.45710nL Slot29532038
FP1S20H0.45720nL Slot35592643
FP1S30H0.45730nL Slot47693553
FP1S40H0.45740nL Slot54754158
FP1S50H0.45750nL Slot69905773
FP3H0.787Solid671342776
FP4H0.91Solid9518932102
FP3S100H0.787100nL Slot170227108164
FP3S200H0.787200nL Slot266320190239
FP3S500H0.787500nL Slot520542416456
FP4S1000H0.911000nL Slot9321000741805
FP4S2000H0.912000nL Slot1571163813511423
Footnotes: (1) Delivery volume range is determined by speed of withdrawal from source liquid: Z-Speed Range = 1.5-30 mm/sec, slow speed = low volume delivery range, fast speed = high volume delivery range (2) 200ul source plate volume per well (3) 75ul source plate volume per well
E-Clip, Uncoated Pins, for 96 and 384 Format Microplates(1)
Pin TypeDiameter (mm)Shape96 Format Low Range(nL)²96 Format High Range(nL)²384 Format Low Range(nL)³384 Format High Range(nL)³
FP1.58Solid Pointed147411168395
FPS.51.58500nL Slot442704631843
FPS1.581000nL Slot893113013431498
FPS21.582000nL Slot1911203826072767
FPS51.585000nL Slot3908429651805253
FP61.58Solid Flat323674154398
FP6S.51.58500nL Slot73410428551053
FP6S1.581000nL Slot1210150016381717
FP6S21.582000nL Slot2299238427873068
FP6S51.585000nL Slot4329465652375245
Footnotes:(1) Delivery volume range is determined by speed of withdrawal from source liquid: Z-Speed Range = 1.5-30 mm/sec, slow speed = low volume delivery range, fast speed = high volume delivery range (2) 200ul source plate volume per well (3) 75ul source plate volume per well